Peramalan Jumlah Kebutuhan Persediaan Kantong Daerah (Blood Bag) di Palang Merah Indonesia Kota Yogyakarta

Authors

  • Lukman Adhitama Universitas Gadjah Mada, Yogyakarta, Indonesia Author
  • Annisa Cipta Nabila Universitas Gadjah Mada, Yogyakarta, Indonesia Author
  • Arie Dwi Zarliansyah Universitas Gadjah Mada, Yogyakarta, Indonesia Author
  • Arissa Dwi Pangestu Universitas Gadjah Mada, Yogyakarta, Indonesia Author
  • Bella Renata Valencia Universitas Gadjah Mada, Yogyakarta, Indonesia Author
  • Deta Handy Prasetyo Universitas Gadjah Mada, Yogyakarta, Indonesia Author
  • Nur Mayke Eka Normasari Universitas Gadjah Mada, Yogyakarta, Indonesia Author

Keywords:

Forecasting, Exponential Smoothing, Moving Average, Linear Regression

Abstract

Blood is an important part of the human body, where if problems occur due to disease, accidents, injuries during natural disasters that cause bleeding, blood transfusions will be required. To encourage blood transfusion activities to remain smooth, it is necessary to carry out good management in controlling the number of blood bag supplies. To overcome this, this research conducted a forecast of the need for blood bags in the Indonesian Red Cross (PMI) Yogyakarta City. The forecasting methods applied in this research are exponential smoothing, moving average and linear regression. Based on the data processing carried out, the results showed that the linear regression method was the best method for predicting the need for the number of blood bags in the Indonesian Red Cross (PMI) Yogyakarta City compared to the exponential smoothing and moving average methods. This is because the error level obtained from the calculation shows that the Mean Absolute Deviation (MAD), Mean Squarred Error (MSE) and Mean Absolute Percentage Error (MAPE) values of the linear regression method are the lowest compared to other methods. The results obtained from forecasting the need for blood bags are that 110 units of blood bags are needed to facilitate blood donations in the next period, namely in the 14th week.

Downloads

Download data is not yet available.

References

Ali, M. T., & Bintang, A. (2022). Pengendali Persediaan Barang Menggunakan Metode Single Exponential Smothing Untuk Peramalan Penjualan. Jurnal Informatika Ekonomi Bisnis, 4(4), 197–202. https://doi.org/10.37034/infeb.v4i4.170

Filho, O. S. S., Carvalho, M. A., Cezarino, W., Silva, R., & Salviano, G. (2013). Demand Forecasting for Blood Components Distribution of a Blood Supply Chain. IFAC Proceedings Volumes, 46(24), 565–571. https://doi.org/10.3182/20130911-3-BR-3021.00092

Fitriani, F., Qasim, M., & Yanan, D. F. F. (2022). Bakti Sosial Donor Darah Dengan Tema Setetes Darah Dapat Menyelamatkan Satu Nyawa Saudara Kita. NUSANTARA: Jurnal Pengabdian Kepada Masyarakat, 2(3), 156–161.

Fortsch, S. M., & Khapalova, E. A. (2016). Reducing uncertainty in demand for blood. Operations Research for Health Care, 9, 16–28. https://doi.org/10.1016/j.orhc.2016.02.002

Garini, A., Harianja, S. H., Bianggo NauE, D. A., & Syailendra, A. (2020). Pemeriksaan Golongan Darah Sistem Abo Dan Rhesus Pada Pelajar Tk Di Kota Palembang Tahun 2019. LINK, 16(1), 12–16. https://doi.org/10.31983/link.v16i1.5631

Katsaliaki, K., & Brailsford, S. C. (2007). Using simulation to improve the blood supply chain. Journal of the Operational Research Society, 58(2), 219–227. https://doi.org/10.1057/palgrave.jors.2602195

Kwok, E., & Susanti, W. (2019). Penerapan Metode Regresi Linier dalam Aplikasi Sistem Peramalan Jumlah Bahan Baku untuk Produksi Tahu. Jurnal Mahasiswa Aplikasi Teknologi Komputer dan Informasi, 1(2), 121–128.

Lardo, S. (2013). Penatalaksanaan Demam Berdarah Dengue dengan Penyulit. CDK, 40(9), 656–660.

Lestari, F., Anwar, U., Nugraha, N., & Azwar, B. (2017). Forecasting Demand in Blood Supply Chain (Case Study on Blood Transfusion Unit).

Octavia, T., Handojo, A., & Heriyanto, G. C. (2023). Blood bags demand forecasting using ARIMA. 030006. https://doi.org/10.1063/5.0141484

Rakhman, A., & Sabanise, A. Y. F. (2019). Sistem Informasi Stok Kebutuhan Darah Pada Palang Merah Indonesia Dengan Metode Weighted Moving Average. Syntax Literate : Jurnal Ilmiah Indonesia, 4(7), 24–32.

Saefudin, Susandi, D., & Nafis, F. (2021). Sistem Peramalan Penjualan Paving Block Menggunakan Metode Single Moving Average. JSiI (Jurnal Sistem Informasi), 8(2), 75–81. https://doi.org/10.30656/jsii.v8i2.3727

Shih, H., & Rajendran, S. (2019). Comparison of Time Series Methods and Machine Learning Algorithms for Forecasting Taiwan Blood Services Foundation’s Blood Supply. Journal of Healthcare Engineering, 2019, 1–6. https://doi.org/10.1155/2019/6123745

Downloads

Published

2024-07-03

Issue

Section

Articles